Mathematics

Quadratic equation:

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$\tan \theta$$

Kinematics (for constant acceleration):

$$v = v_0 + at$$

 $x = v_0 t + \frac{1}{2}at^2$
 $x = v_0 t + \frac{1}{2}at^2$
 $x = v_0 t + \frac{1}{2}at^2$
 $x = v_0 t + \frac{1}{2}at^2$

Forces:

 $\sum \vec{\mathbf{F}} = m\vec{\mathbf{a}}$ Newton's second law:

 $\sum \vec{\mathbf{F}} = 0$ First condition for equilibrium:

Gravity:

Gravitational force near the earth: F = mg

Newton's law of universal gravitation: $F = G \frac{m_1 m_2}{r^2}$

 $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ $g = 9.80 \text{ m/s}^2$

Friction:

 $0 \le f_s \le \mu_s F_N$ direction is always opposite to motion (or tendency to motion) Static: Kinetic: $f_k = \mu_k F_N$

 $E = KE + PE = constant; E_f = E_i$

Uniform Circular Motion

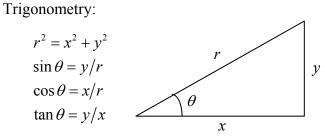
 $T = \frac{2\pi r}{v}$, where v is the speed of the object and r is the radius of the circle Period: $f = \frac{1}{T}$ θ (in radians) = $\frac{\text{Arc length}}{\text{radius}}$ Frequency: $a_c = \frac{v^2}{v}$ Centripetal Acceleration: $F_c = \frac{mv^2}{r}$ (directed towards the centre) Centripetal Force: Work, Energy, and Power: $W = (F \cos \theta) s$ Work: $KE = \frac{1}{2} mv^2$ Kinetic energy: Potential energy: PE = mghGravitational (near Earth): Work-energy theorem: $W_{\rm nc} = \Delta {\rm KE} + \Delta {\rm PE} = E_f - E_i$

 $\overline{P} = \frac{W}{t}$

E = KE + PETotal mechanical energy:

Conservation of mechanical energy:

Power (rate of doing work):



$$x = \frac{1}{2}(v_0 + v)t$$
$$v^2 = v_0^2 + 2ax$$

Linear Momentum

Impulse:

 $\vec{\mathbf{J}} = \vec{\vec{\mathbf{F}}} \Delta t = \Delta \vec{\mathbf{p}} = m \vec{\mathbf{v}}_f - m \vec{\mathbf{v}}_i$

Conservation of Momentum: $\vec{\mathbf{p}}_i = \vec{\mathbf{p}}_f$, if no external forces

Torque and Angular Momentum

Torque:	$\tau = Fl = Fr \sin\theta;$	$l = (\text{lever arm}) = r \sin\theta$
Second condition of equilibrium:	$\sum ec au = 0$	
Angular momentum:	$L = I\omega$ is conserved, in the absence of external torques	
Moment of inertia:	$I = \sum mr^2$	

Simple Harmonic Motion

Hooke's law:	Restoring force = $F = -kx$
Elastic potential energy:	$PE = \frac{1}{2}kx^2$
Displacement: $x = A \cos(\omega)$	t) (when $x = A$ at $t = 0$)
Velocity: $v = -A\omega \sin(\omega t)$	Acceleration: $a = -A\omega^2 \cos(\omega t)$
Frequency, Period	$\omega^2 = \frac{k}{m};$ $f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}};$ $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}$
Simple pendulum	$T = 2\pi \sqrt{\frac{L}{g}}$
Energy	$E = KE + PE = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$

Fluids

Pressure:	P = Force/Area
Pressure and Depth:	$P_2 = P_1 + \rho g h$
Continuity Equation:	$\rho_1 v_1 A_1 = \rho_2 v_2 A_2$
Bernoulli's Equation:	$P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$

Heat, Temperature and Kinetic Theory

Linear thermal expansion: $\Delta L = \alpha L_0 \Delta T$				
Volume thermal expansion: $\Delta V = \beta V_0 \Delta T$				
Heat and temperature change: $Q = c m \Delta T$				
Heat required for change of phase: $Q = mL$				
Conduction of heat through a material: $\frac{Q}{t} = \frac{k A \Delta T}{L}$				
$n = \frac{N}{N_A} = \frac{m}{\text{mass per mole}} \qquad N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$				
$PV = nRT = \frac{2}{3}N \overline{\text{KE}}$ $R = 8.314 \text{ J/(mol·K)}$				
$\overline{\mathrm{KE}} = \frac{1}{2} m v_{rms}^2 = \frac{3}{2} kT$				